This movie requires Flash Player 8. Download Flash Player 8

America's Culture War

Search :

The Founders Wanted the Gospel Preached?

by  Dave Miller, Ph.D.

Section 1 - Cosmic Microwave Background Radiation
Section 2 - The Homogeneity of the Universe
Section 3 - Can Inflationary Theory Save the Big Bang?
Section 4 - References


In the February 2001 issue of Scientific American, Philip and Phylis Morrison authored an article titled “The Big Bang: Wit or Wisdom?,” in which they remarked: “We no longer see a big bang as a direct solution” (284[2]:95). It’s no wonder. As Andrei Linde also wrote in Scientific American (seven years earlier) about the supporting evidences for the Big Bang: “We found many to be highly suspicious” (1994, 271[5]:48).

Dr. Linde’s comments caught no one by surprise—and drew no ire from his colleagues. In fact, long before he committed to print in such a prestigious science journal the Big Bang’s obituary, cosmologists had known (though they were not thrilled at the thought of having to admit it publicly) that the Big Bang is, to use our earlier phrase, “scientifically brain dead.”

But it was because of that very fact that so many evolutionists had been working so diligently to find some way to “tweak” the Big Bang model so as to possibly revive it. As Berlinski rightly remarked:

Notwithstanding the investment made by the scientific community and the general public in contemporary cosmology, a suspicion lingers that matters do not sum up as they should. Cosmologists write as if they are quite certain of the Big Bang, yet, within the last decade, they have found it necessary to augment the standard view by means of various new theories. These schemes are meant to solve problems that cosmologists were never at pains to acknowledge, so that today they are somewhat in the position of a physician reporting both that his patient has not been ill and that he has been successfully revived (1998, p. 30).

Scientists are desperately searching for an answer that will allow them to continue to defend at least some form of the Big Bang Model. Berlinski went on to note:

Almost all cosmologists have a favored scheme; when not advancing their own, they occupy themselves enumerating the deficiencies of the others.... Having constructed an elaborate scientific orthodoxy, cosmologists have acquired a vested interest in its defense.... Like Darwin’s theory of evolution, Big Bang cosmology has undergone that curious social process in which a scientific theory has been promoted to a secular myth (pp. 31-32,33,38, emp. added).

Enter inflationary theory—and the idea of (gulp!) a self-created Universe. In the past, it would have been practically impossible to find any reputable scientist who would have been willing to advocate a self-created Universe. To hold such a view would have been professional suicide. George Davis, a prominent physicist of the past generation, explained why when he wrote: “No material thing can create itself.” Further, as Dr. Davis took pains to explain, such a statement “cannot be logically attacked on the basis of any knowledge available to us” (1958, p. 71). The Universe is the created, not the Creator. And until fairly recently, it seemed there could be no disagreement about that fact.

But, once again, “that was then; this is now.” Because the standard Big Bang model is in such dire straits, and because the evidence is so conclusive that the Universe had some kind of beginning, evolutionists now are actually suggesting that something came from nothing—that is, the Universe literally created itself from nothing! Edward P. Tryon, professor of physics at the City University of New York, was one of the first to suggest such an outlandish hypothesis: “In 1973,” he said, “I proposed that our Universe had been created spontaneously from nothing, as a result of established principles of physics. This proposal variously struck people as preposterous, enchanting, or both” (1984, 101:14-16, emp. added). This is the same Edward P. Tryon who went on record as stating: “Our universe is simply one of those things which happen from time to time” (1973, 246:397).

Three years earlier, as it turned out, physicist Alan Guth of MIT had published a paper titled “Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” in which he outlined the specifics of inflationary theory (see Guth, 1981). Three years later, the idea that the Universe had simply “popped into existence from nothing,” took flight when, in the May 1984 issue of Scientific American, Guth teamed up with physicist Paul Steinhardt of Princeton to co-author an article titled “The Inflationary Universe,” in which they suggested:

From a historical point of view probably the most revolutionary aspect of the inflationary model is the notion that all the matter and energy in the observable universe may have emerged from almost nothing.... The inflationary model of the universe provides a possible mechanism by which the observed universe could have evolved from an infinitesimal region. It is then tempting to go one step further and speculate that the entire universe evolved from literally nothing (1984, 250:128, emp. added).

Therefore, even though principles of physics that “cannot be logically attacked on the basis of any knowledge available to us” precluded the creation of something out of nothing, suddenly, in an eleventh-hour effort to resurrect the comatose Big Bang Theory, it was suggested that indeed, the Universe simply had “created itself out of nothing.” As physicist John Gribbin suggested (in an article he wrote for New Scientist titled “Cosmologists Move Beyond the Big Bang”) two years after Guth and Steinhardt offered their proposal: “ models are based on the concept that particles [of matter—BT/BH/BM] can be created out of nothing at all...under certain conditions” and that “...matter might suddenly appear in large quantities” (1986, 110[1511]:30).

Naturally, such a proposal would seem—to use Dr. Tryon’s word—“preposterous.” Be that as it may, some in the evolutionary camp were ready and willing to defend it—practically from the day it was suggested. One such scientist was Victor Stenger, professor of physics at the University of Hawaii. A mere three years after Guth and Steinhardt had published their volley in Scientific American, Dr. Stenger authored an article titled “Was the Universe Created?,” in which he said:

...the universe is probably the result of a random quantum fluctuation in a spaceless, timeless void.... So what had to happen to start the universe was the formation of an empty bubble of highly curved space-time. How did this bubble form? What caused it? Not everything requires a cause. It could have just happened spontaneously as one of the many linear combinations of universes that has the quantum numbers of the void.... Much is still in the speculative stage, and I must admit that there are yet no empirical or observational tests that can be used to test the idea of an accidental origin (1987, 7[3]:26-30, italics in orig., emp. added.).

Not surprisingly, such a concept has met with rather stiff opposition from certain quarters within the scientific establishment. For example, in the summer 1994 edition of the Skeptical Inquirer, Ralph Estling wrote a stinging rebuke of the idea that the Universe created itself out of nothing. In his curiously titled article, “The Scalp-Tinglin’, Mind-Blowin’, Eye-Poppin’, Heart-Wrenchin’, Stomach-Churnin’, Foot-Stumpin’, Great Big Doodley Science Show!!!,” Estling wrote:

The problem emerges in science when scientists leave the realm of science and enter that of philosophy and metaphysics, too often grandiose names for mere personal opinion, untrammeled by empirical evidence or logical analysis, and wearing the mask of deep wisdom.
And so they conjure us an entire Cosmos, or myriads of cosmoses, suddenly, inexplicably, causelessly leaping into being out of—out of Nothing Whatsoever, for no reason at all, and there-after expanding faster than light into more Nothing Whatsoever. And so cosmologists have given us Creation ex nihilo.... And at the instant of this Creation, they inform us, almost parenthetically, the universe possessed the interesting attributes of Infinite Temperature, Infinite Density, and Infinitesimal Volume, a rather gripping state of affairs, as well as something of a sudden and dramatic change from Nothing Whatsoever. They then intone equations and other ritual mathematical formulae and look upon it and pronounce it good.
I do not think that what these cosmologists, these quantum theorists, these universe-makers, are doing is science. I can’t help feeling that universes are notoriously disinclined to spring into being, ready-made, out of nothing, even if Edward Tryon (ah, a name at last!) has written that “our universe is simply one of those things which happen from time to time....” Perhaps, although we have the word of many famous scientists for it, our universe is not simply one of those things that happen from time to time (18[4]:430, parenthetical item in orig., emp. added).
Figure 7

Figure 7 — Artist’s depiction of the Big Bang Inflationary Model. Image courtesy of CERN.

Estling’s statements set off a wave of controversy, as was evident from subsequent letters to the Skeptical Inquirer. In the January/February 1995 edition of that journal, numerous letters were published, discussing Estling’s article. Estling’s response to his critics was published as well, and included the following observations:

All things begin with speculation, science not excluded. But if no empirical evidence is eventually forthcoming, or can be forthcoming, all speculation is barren.... There is no evidence, so far, that the entire universe, observable and unobservable, emerged from a state of absolute Nothingness. Quantum cosmologists insist both on this absolute Nothingness and on endowing it with various qualities and characteristics: this particular Nothingness possesses virtual quanta seething in a false vacuum. Quanta, virtual or actual, false or true, are not Nothing, they are definitely Something, although we may argue over what exactly. For one thing, quanta are entities having energy, a vacuum has energy and moreover, extension, i.e., it is something into which other things, such as universes, can be put, i.e., we cannot have our absolute Nothingness and eat it too. If we have quanta and a vacuum as given, we in fact have a pre-existent state of existence that either pre-existed timelessly or brought itself into existence from absolute Nothingness (no quanta, no vacuum, no pre-existing initial conditions) at some precise moment in time; it creates this time, along with the space, matter, and energy, which we call the universe.... I’ve had correspondence with Paul Davies [a British astronomer who has championed the idea that the Universe created itself from nothing—BT/BH/BM] on cosmological theory, in the course of which, I asked him what he meant by “Nothing.” He wrote back that he had asked Alexander Vilenkin what he meant by it and that Vilenkin had replied, “By Nothing I mean Nothing,” which seemed pretty straightforward at the time, but these quantum cosmologists go on from there to tell us what their particular breed of Nothing consists of. I pointed this out to Davies, who replied that these things are very complicated. I’m willing to admit the truth of that statement, but I think it does not solve the problem (1995, 19[1]:69-70, emp. added).

This is an interesting turn of events. Evolutionists like Tryon, Stenger, Guth, and Steinhardt insist that this marvelously intricate Universe is “simply one of those things which happen from time to time” as the result of a “random quantum fluctuation in a spaceless, timeless void” that caused matter to evolve from “literally nothing.” Such a suggestion, of course, would seem to be a clear violation of the first law of thermodynamics, which states that neither matter nor energy may be created or destroyed in nature. Berlinski acknowledged this when he wrote:

Hot Big Bang cosmology appears to be in violation of the first law of thermodynamics. The global energy needed to run the universe has come from nowhere, and to nowhere it apparently goes as the universe loses energy by cooling itself.
This contravention of thermodynamics expresses, in physical form, a general philosophical anxiety. Having brought space and time into existence, along with everything else, the Big Bang itself remains outside any causal scheme (1998, p. 37).

But, as one might expect, supporters of inflation have come up with a response to that complaint, too. In discussing the Big Bang, Linde wrote in Scientific American:

In its standard form, the big bang theory maintains that the universe was born about 15 billion years ago from a cosmological singularity—a state in which the temperature and density are infinitely high. Of course, one cannot really speak in physical terms about these quantities as being infinite. One usually assumes that the current laws of physics did not apply then (1994, 271[5]:48).

Linde is not the only one willing to acknowledge what the essence of Big-Bang-type scenarios does to the basic laws of physics. Astronomer Joseph Silk wrote:

The universe began at time zero in a state of infinite density. Of course, the phrase “a state of infinite density” is completely unacceptable as a physical description of the universe.... An infinitely dense universe [is] where the laws of physics, and even space and time, break down (as quoted in Berlinski, 1998, p. 36).

But there are other equally serious problems as well. According to Guth, Steinhardt, Linde, and other evolutionary cosmologists, before the inflationary Big Bang, there was—well, nothing. Berlinski concluded: “But really the question of how the show started answers itself: before the Big Bang there was nothing” (p. 30). Or, as Terry Pratchett wrote in Lords and Ladies: “The current state of knowledge can be summarized thus: In the beginning, there was nothing, which exploded” (1994, p. 7). Think about that for just a moment. Berlinski did, and then wrote:

The creation of the universe remains unexplained by any force, field, power, potency, influence, or instrumentality known to physics—or to man. The whole vast imposing structure organizes itself from absolutely nothing. This is not simply difficult to grasp. It is incomprehensible.
Physicists, no less than anyone else, are uneasy with the idea that the universe simply popped into existence, with space and time “suddenly switching themselves on.” The image of a light switch comes from Paul Davies, who uses it to express a miracle without quite recognizing that it embodies a contradiction. A universe that has suddenly switched itself on has accomplished something within time; and yet the Big Bang is supposed to have brought space and time into existence.
Having entered a dark logical defile, physicists often find it difficult to withdraw. Thus, Alan Guth writes in pleased astonishment that the universe really did arise from “essentially...nothing at all”: “as it happens, a false vacuum patch” “[10-26] centimeters in diameter” and “[10-32] solar masses.” It would appear, then, that “essentially nothing” has both spatial extension and mass. While these facts may strike Guth as inconspicuous, others may suspect that nothingness, like death, is not a matter that admits of degrees (p. 37, emp. added).

In their more unguarded moments, evolutionary theorists admit as much. Writing in Astronomy magazine on “Planting Primordial Seeds,” Rocky Kolb suggested: “In a very real sense, quantum fluctuations would be the origin of everything we see in the universe.” Yet just one sentence prior to that, he admitted: “...[A] region of seemingly empty space is not really empty, but is a seething froth in which every sort of fundamental particle pops in and out of empty space before annihilating with its antiparticle and disappearing” (1998, 26[2]:42,43, emp. added).

Ultimately, the Guth/Steinhardt inflationary model was shown to be incorrect (see Guth and Weinberg, 1983), and a newer version was suggested. Working independently, Russian-American physicist Andrei Linde, and American physicists Andreas Albrecht and Paul Steinhardt, developed the “new inflationary model” (see Hawking, 1988, pp. 131-132; Linde, 1994, 271[5]:51). However, this model also was shown to be incorrect, and was discarded. Renowned British astrophysicist Stephen W. Hawking put the matter in proper perspective when he wrote:

The new inflationary model was a good attempt to explain why the universe is the way it is.... In my personal opinion, the new inflationary model is now dead as a scientific theory, although a lot of people do not seem to have heard of its demise and are still writing papers on it as if it were viable (1988, p. 132, emp. added).

Later, Linde suggested numerous modifications, and is credited with producing what became known as the “chaotic inflationary model” (see Hawking, pp. 132ff.). Dr. Hawking also performed additional work on this particular model. However, in an interview on June 8, 1994, dealing with inflationary models, Alan Guth conceded:

First of all, I will say that at the purely technical level, inflation itself does not explain how the universe arose from nothing.... Inflation itself takes a very small universe and produces from it a very big universe. But inflation by itself does not explain where that very small universe came from (as quoted in Heeren, 1995, p. 148).

After the chaotic inflationary model, came the eternal inflationary model, which was set forth by Linde in 1986. As Barrow summarized it in The Book of Nothing:

The spectacular effect of this is to make inflation self-reproducing. Every inflating region gives rise to other sub-regions which inflate and then in turn do the same. The process appears unstoppable—eternal. No reason has been found why it should ever end. Nor is it known if it needs to have a beginning. As with the process of chaotic inflation, every bout of inflation can produce a large region with very different properties. Some regions may inflate a lot, some only a little; some may have many large dimensions of space, some only three; some may contain four forces of Nature that we see, others may have fewer. The overall effect is to provide a physical mechanism by which to realize all, or at least almost all, possibilities somewhere within a single universe.
These speculative possibilities show some of the unending richness of the physicists’ conception of the vacuum. It is the basis of our most successful theory of the Universe and why it has the properties that it does. Vacuums can change; vacuums can fluctuate; vacuums can have strange symmetries, strange geographies, strange histories. More and more of the remarkable features of the Universe we observe seem to be reflections of the properties of the vacuum (2000, pp. 256,271).

Michael J. Murray discussed the idea of the origin of the Universe via the Big Bang inflationary model.

According to the vacuum fluctuation models, our universe, along with these other universes, were generated by quantum fluctuations in a preexisting superspace. Imaginatively, one can think of this preexisting superspace as an infinitely extending ocean of soap, and each universe generated out of this superspace as a soap bubble which spontaneously forms on the ocean (1999, pp. 59-60).

Magnificent claims, to be sure—yet little more than wishful thinking. For example, cosmologists speak of a special particle—known as an “inflaton”—that is supposed to have provided the vacuum with its initial energy. Yet as scientists acknowledge, “...the particle that might have provided the vacuum energy density is still unidentified, even theoretically; it is sometimes called the inflaton because its sole purpose seems to be to have produced inflation” (see “The Inflationary Universe”). In an article on “Before the Big Bang” in the March 1999 issue of Analog Science Fiction & Fact Magazine, John Cramer wrote:

The problem with all of this is that the inflation scenario seems rather contrived and raises many unresolved questions. Why is the universe created with the inflaton field displaced from equilibrium? Why is the displacement the same everywhere? What are the initial conditions that produce inflation? How can the inflationary phase be made to last long enough to produce our universe? Thus, the inflation scenario which was invented to eliminate the contrived initial conditions of the Big Bang model apparently needs contrived initial conditions of its own (1999, emp. added).

Cosmologist Michael Turner put it this way: “If inflation is the dynamite behind the Big Bang, we’re still looking for the match” (as quoted in Overbye, 2001). Or, as journalist Dennis Overbye put it in an article titled “Before the Big Bang, There Was...What?” in the May 22, 2001 issue of The New York Times: “The only thing that all the experts agree on is that no idea works—yet” (2001). Barrow admitted somewhat sorrowfully: “So far, unfortunately, the entire grand scheme of eternal inflation does not appear to be open to observational tests” (2000, p. 256, emp. added). In his book, The Accelerating Universe, Mario Livio wrote in agreement:

If eternal inflation really describes the evolution of the universe, then the beginning may be entirely inaccessible to observational tests. The point is that even the original inflationary model, with a single inflation event, already had the property of erasing evidence from the preinflation epoch. Eternal inflation appears to make any efforts to obtain information about the beginning, via observations in our own pocket universe, absolutely hopeless (2000, pp. 180-181, emp. added).

Writing in the February 2001 issue of Scientific American, Philip and Phylis Morrison admitted:

We simply do not know our cosmic origins; intriguing alternatives abound, but none yet compels. We do not know the details of inflation, nor what came before, nor the nature of the dark, unseen material, nor the nature of the repulsive forces that dilute gravity. The book of the cosmos is still open. Note carefully: we no longer see a big bang as a direct solution. Inflation erases evidence of past space, time and matter. The beginning—if any—is still unread (284[2]:95, emp. added).

But Dr. Barrow went even farther:

As the implications of the quantum picture of matter were explored more fully, a further radically new consequence appears that was to impinge upon the concept of the vacuum. Werner Heisenberg showed that there were complementary pairs of attributes of things which could not be measured simultaneously with arbitrary precision, even with perfect instruments. This restriction on measurement became known as the Uncertainty Principle. One pair of complementary attributes limited by the Uncertainty Principle is the combination of position and momentum. Thus we cannot know at once where something is and how it is moving with arbitrary precision....
The Uncertainty Principle and the quantum theory revolutionised our conception of the vacuum. We can no longer sustain the simple idea that a vacuum is just an empty box. If we could say that there were no particles in a box, that it was completely empty of all mass and energy, then we would have to violate the Uncertainty Principle because we would require perfect information about motion at every point and about the energy of the system at a given instant of time....
This discovery at the heart of the quantum description of matter means that the concept of a vacuum must be somewhat realigned. It is no longer to be associated with the idea of the void and of nothingness or empty space. Rather, it is merely the emptiest possible state in the sense of the state that possesses the lowest possible energy; the state from which no further energy can be removed (2000, pp. 204,205, first emp. in orig.; last emp. added).

The simple fact is, to quote R.C. Sproul, “Every effect must have a cause. That is true by definition.... It is impossible for something to create itself. The concept of self-creation is a contradiction in terms, a nonsense statement.... [S]elf-creation is irrational” (1992, p. 37, emp. in orig.).

Furthermore, science is based on observation, reproducibility, and empirical data. But when pressed for the empirical data that document the claim that the Universe created itself from nothing, evolutionists are forced to admit, as Dr. Stenger did, that “...there are yet no empirical or observational tests that can be used to test the idea....” Estling summarized the problem quite well when he stated: “There is no evidence, so far, that the entire universe, observable and unobservable, emerged from a state of absolute Nothingness.” Agreed.

[to be continued]

Copyright © 2011 Apologetics Press, Inc. All rights reserved.

We are happy to grant permission for items in the "America's Culture War" section to be reproduced in part or in their entirety, as long as the following stipulations are observed: (1) Apologetics Press must be designated as the original publisher; (2) the specific Apologetics Press Web site URL must be noted; (3) the author’s name must remain attached to the materials; (4) textual alterations of any kind are strictly forbidden; (5) Some illustrations (e.g., photographs, charts, graphics, etc.) are not the intellectual property of Apologetics Press and as such cannot be reproduced from our site without consent from the person or organization that maintains those intellectual rights; (6) serialization of written material (e.g., running an article in several parts) is permitted, as long as the whole of the material is made available, without editing, in a reasonable length of time; (7) articles, excepting brief quotations, may not be offered for sale or included in items offered for sale; and (8) articles may be reproduced in electronic form for posting on Web sites pending they are not edited or altered from their original content and that credit is given to Apologetics Press, including the web location from which the articles were taken.

For catalog, samples, or further information, contact:

Apologetics Press
230 Landmark Drive
Montgomery, Alabama 36117
Phone (334) 272-8558